Effect of noise level on intensity and luminosity

Round beams, equal β^* :

$$L = \frac{f_c N_1 N_2}{2\pi (\sigma_{\perp 1}^2 + \sigma_{\perp 2}^2)} R_L = \frac{f_c N_1 N_2}{2\pi \beta^* (\varepsilon_1 + \varepsilon_2)} R_L$$

Naive expectation:

$$\varepsilon_2(t) = \varepsilon_{20}(1+Dt),$$

$$D = D_{resonances} + D_{noise}$$

or

$$\frac{L}{L_0} = \frac{1}{1 + (D_{res} + D_{noise})t/2}, \quad (\varepsilon_{20} = \varepsilon_{10})$$

- the stronger resonances, the smaller relative contribution from noise – really not so:

- the effect of the noise is more pronounced at Q_y = .575, where the resonances are the strongest.

The effect of noise at WP=0.585, 0.575 studied in more detail.

Ideal optics, unit noise level corresponds to $\approx 20\%$ emittance growth in $2 \cdot 10^6$ turns.

Cooperative effect of noise and resonances:

- 1. Effect of the external noise in the presence of strong resonances is by a factor of 2.5 stronger than expected.
- 2. Without noise the resonances produce smaller effect than the fit predicts.

Test of the hypothesis:

Conclusions:

- 1. Strong cooperation of noise and resonances makes introduction of the noise in the tracking routine mandatory.
- 2. The diffusion coefficient introduced by the noise is proportional to the noise level, however it contains a factor which depends on the working point (more precisely, on the area of the phase space occupied by resonances).
- 3. The chosen noise level (20% emittance growth without beam-beam) appears to be sufficient for the cooperative effect to develop in $2 \cdot 10^6$ turns of tracking.